Molecular Line Emission from Gravitationally Unstable Protoplanetary Disks

نویسندگان

  • Desika Narayanan
  • Craig A. Kulesa
  • Alan Boss
  • Christopher K. Walker
چکیده

In the era of high-resolution submillimeter interferometers, it will soon be possible to observe the neutral circumstellar medium directly involved in gas giant planet (GGP) formation at physical scales previously unattainable. In order to explore possible signatures of GGP formation via disk instabilities, we have combined a three-dimensional (3D), nonlocal thermodynamic equilibrium (LTE) radiative transfer code with a 3D, finite differences hydrodynamical code to model molecular emission lines from the vicinity of a 1.4MJ self-gravitating proto-GGP. Here we explore the properties of rotational transitions of the commonly observed dense gas tracer, HCOþ. Our main results are as follows: (1) Very high lying HCOþ transitions (e.g., HCOþ J 1⁄4 7 6) can trace dense clumps around circumstellar disks. Depending on the molecular abundance, the proto-GGP may be directly imageable by the Atacama Large Millimeter Array (ALMA). (2) HCOþ emission lines are heavily self-absorbed through the proto-GGP’s dense molecular core. This signature is nearly ubiquitous and only weakly dependent on assumed HCOþ abundances. The self-absorption features are most pronounced at higher angular resolutions. Dense clumps that are not self-gravitating only show minor self-absorption features. (3) Line temperatures are highest through the proto-GGP at all assumed abundances and inclination angles. Conversely, due to self-absorption in the line, the velocity-integrated intensity may not be. High angular resolution interferometers such as the Submillimeter Array (SMA) and ALMAmay be able to differentiate between competing theories of GGP formation. Subject headinggs: circumstellar matter — line: formation — line: profiles — planetary systems: formation — planetary systems: protoplanetary disks — radiative transfer

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Internal Energy for Molecular Hydrogen in Gravitationally Unstable Protoplanetary Disks

The gas equation of state may be one of the critical factors for the disk instability theory of gas giant planet formation. This letter addresses the treatment of H2 in hydrodynamical simulations of gravitationally unstable disks. In our discussion, we point out possible consequences of erroneous specific internal energy relations, approximate specific internal energy relations with discontinui...

متن کامل

Fragmentation of Gravitationally Unstable Gaseous Protoplanetary Disks with Radiative Transfer

We report on the results of the first 3D SPH simulation of massive, gravitationally unstable protoplanetary disks with radiative transfer. We adopt a flux-limited diffusion scheme justified by the high opacity of most of the disk. The optically thin surface of the disk cools as a blackbody. The disks grow slowly in mass starting from a Toomre-stable initial condition to the point at which they ...

متن کامل

Molecular hydrogen emission from protoplanetary disks

We have modeled self-consistently the density and temperature profiles of gas and dust in protoplanetary disks, taking into account irradiation from a central star. Making use of this physical structure, we have calculated the level populations of molecular hydrogen and the line emission from the disks. As a result, we can reproduce the observed strong line spectra of molecular hydrogen from pr...

متن کامل

Molecular Hydrogen Emission from Protoplanetary Disks II. Effects of X-ray Irradiation and Dust Evolution

Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and ultraviolet (UV) irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains in the disks are numerically computed by solving the coagulation equation fo...

متن کامل

Resolving Molecular Line Emission from Protoplanetary Disks: Observational Prospects for Disks Irradiated by Infalling Envelopes

Molecular line observations that could resolve protoplanetary disks of ∼ 100 AU both spatially and kinematically would be a useful tool to unambiguously identify these disks and to determine their kinematical and physical characteristics. In this work we model the expected line emission from a protoplanetary disk irradiated by an infalling envelope, addressing the question of its detectability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006